Temporal-spatial orientation in first-grade pupils from elementary school participating in Physical Education classes using Edubal educational balls

Sara Wawrzyniak
Andrzej, sara.wawrzyniak@yahoo.com

Follow this and additional works at: https://dcgdansk.bepress.com/journal

Part of the Health and Physical Education Commons, Sports Medicine Commons, Sports Sciences Commons, and the Sports Studies Commons

Recommended Citation

This Article is brought to you for free and open access by Baltic Journal of Health and Physical Activity. It has been accepted for inclusion in Baltic Journal of Health and Physical Activity by an authorized editor of Baltic Journal of Health and Physical Activity.
Temporal-spatial orientation in first-grade pupils from elementary school participating in Physical Education classes using Edubal educational balls

Sara Wawrzyniak A B C D E F G, Andrzej Rokita A E F G, Damian Pawlik B E F

Department of Team Games, University School of Physical Education in Wroclaw, Poland

abstract

Background
The aim of the study was to determine the level and changes in the level of temporal-spatial orientation in first-grade pupils from elementary schools who participated in Physical Education classes integrated with subject-related contents that used Edubal educational balls.

Material/Methods
Research material comprised first-grade pupils from two classes in an elementary school in Wroclaw, Poland. The study was carried out during the second term of the 2013/2014 school year. Fifty-four pupils (26 girls and 18 boys) were diagnosed in total. The study employed the method of a pedagogical experiment that used the parallel groups technique (experimental class and control class).

Results
In the first examination, pupils from the control group obtained better results compared to pupils from the experimental group (p=0.04). In the second examination, pupils from the experimental class obtained better results compared to those from the control group. However, the difference between the results obtained in both groups was not statistically significant (p = 0.87).

Conclusions
The results obtained in the study lead to a conclusion that it is justified to carry out further studies in order to evaluate the level and possible changes in temporal-spatial orientation in first-grade pupils from elementary school who participate in Physical Education classes that use Edubal educational balls and to search for the relationships between the pupils’ temporal-spatial orientation and school performance.

Key words
temporal-spatial orientation, first-grade pupils, elementary school, Edubal educational balls.

article details

Article statistics
Word count: 2,994; Tables: 2; Figures: 4; References: 63
Received: December 2014; Accepted: May 2015; Published: June 2015

Full-text PDF:
http://www.balticsportscience.com

Copyright
© Gdansk University of Physical Education and Sport, Poland

Indexation:
Celdes, CNKI Scholar (China National Knowledge Infrastructure), CNPIEC, De Gruyter - IBR (International Bibliography of Reviews of Scholarly Literature in the Humanities and Social Sciences), De Gruyter - IBZ (International Bibliography of Periodical Literature in the Humanities and Social Sciences), DOAJ, EBSCO - Central & Eastern European Academic Source, EBSCO - SPORTDiscus, EBSCO Discovery Service, Google Scholar, Index Copernicus, J-Gate, Naviga (Softweco, Primo Central (ExLibris), ProQuest - Family Health, ProQuest - Health & Medical Complete, ProQuest - Illustrata: Health Sciences, ProQuest - Nursing & Allied Health Source, Summon (Serials Solutions/ProQuest, TDOne (TDBNet), Ulrich’s Periodicals Directory/Ulrichsweb, WorldCat (OCLC)

Funding:
The study was carried out within the research project: „Graphomotor skills, eye-hand coordination and temporal-spatial orientation in first-grade pupils from elementary school participating in Physical Education classes with Edubal educational balls”

Conflict of interest:
Authors have declared that no competing interest exists.

Corresponding author:
Sara Wawrzyniak, University School of Physical Education, Department of Team Sports, A. Mickiewicza Str. 58, 51-684 Wroclaw, Poland; phone: +48 604 536 348; fax: +48 71 347 35 62; e-mail: sara.wawrzyniak@yahoo.com

Open Access License:
This is an open access article distributed under the terms of the Creative Commons Attribution-Non-commercial 4.0 International (http://creativecommons.org/licenses/by-nc/4.0/), which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non-commercial and is otherwise in compliance with the license.
INTRODUCTION

The beginning of education in first-grade classes of elementary schools is a particularly important period in children’s development, who familiarize with the world of learning at school. Early school education represents a specific foundation which further education and raising children rest upon [1]. The role of school and teachers is to support pupils in their proper and comprehensive intellectual, emotional, social, ethical, physical and aesthetic development [2].

In early school education, pupils are in the period of younger school age, which is when children obtain the best results in motor learning [3]. Achieving an adequate level of motor abilities supports the learning process in first-grade pupils. Studies have demonstrated a relationship between pupils’ motor skills and cognitive development. It was found that a high level of motor skills improves their school performance [3-25].

In first-grade classes of elementary schools, pupils start learning to read and write. These skills are especially important from the standpoint of the educational process since difficulties in this area might cause school failure [6, 26-34]. Therefore, disturbances in motor skills, particularly in specific coordination motor abilities and, more specifically, temporal-spatial orientation, might be a cause of school failure in learning to read and write.

Temporal-spatial orientation is one of specific coordination motor abilities which control human movements. It is often understood to mean feeling the distance from an object [35]. This ability allows for adoption of human body position and changes in this position during movement of the whole body in time and space with respect to a specific area of activity (e.g. a sports field, sports hall or a sports device) or a moving object (a partner, an opponent, the ball), combining perception and motor activity [36].

Temporal-spatial orientation allows not only for normal functioning in everyday life, but it always affects the process of learning at school. It determines the speed and the quality of learning as well as the accuracy of learning to read and write [3, 4, 37, 38]. Wojcik-Grzyb [4] argues that learning reading and writing skills is not only an intellectual but also a motor activity. Zurek [38] emphasizes that the development of higher writing skills is stimulated by the somatic and motor development. A low level of temporal-spatial orientation might directly cause difficulties in acquisition of reading and writing skills.

It was demonstrated that a change in the level of temporal-spatial orientation can be stimulated. The level of temporal-spatial orientation depends on interactions between biological and environmental factors and, according to many authors, on using the respective methods and training resources [39-44]. It seems that the best method of development of temporal-spatial orientation in pupils at the early school age is the use of games and play with the ball during Physical Education classes. In first to third grade classes, children are willing to perform various motor exercises and to compete, which is connected with more intensive motor activity and biological need for „blowing off steam” [45]. At this stage of education, games and play are an inseparable component of physical activity classes. Furthermore, games
and play are a favourite form of physical activity among children and young people [46-48]. One of the didactic resources that match the canons of early school education is Edubal educational balls. Edubal educational balls is a set of 94 balls used for mini team games (basketball, football, volleyball, handball), in four colours, with painted letters of alphabet (large and small letters), digits from 1 to 9 and 0, mathematical operation symbols and a symbol of electronic mail “@” [49]. Edubal educational balls are included in the list of didactic resources for the use in schools during general education and integrated education at the level of elementary school (No. 1566/2003, based on the ordinance of the Ministry of National Education and Sport, Journal of Laws of 2009, No. 69, Pos. 635). Educational balls were also given a recommendation of the Sejm Committee for Physical Culture and Sport (hearing as of 25th November 2003, Bulletin No. 2552/IV).

The use of Edubal educational balls in Physical Education classes does not only make the classes attractive but also improves their efficiency in acquisition of cognitive skills in the field of Polish language and mathematical skills [50-57].

The aim of the study was to determine the level and changes in the level of temporal-spatial orientation in first-grade pupils from elementary schools who participated in Physical Education classes integrated with subject-related contents that used Edubal educational balls. We asked the following research questions:

1. What is the level of temporal-spatial orientation in first-grade pupils from elementary school (experimental class and control class)?

2. Did (how) the level of temporal-spatial orientation change in first-grade pupils who participated in Physical Education classes integrated with subject-related contents using Edubal educational balls (experimental classes) and pupils from the control group who participated in Physical Education classes without using Edubal educational balls?

3. Do Physical Education classes using Edubal educational balls differentiate between the level of temporal-spatial orientation in first-grade pupils from elementary schools?

4. Does (how) gender differentiate between the level of temporal-spatial orientation in first-grade pupils from elementary school?

**MATERIALS AND METHODS**

Research material was first-grade pupils from two classes of the Elementary School No. 50 in Wroclaw, Poland, aged 6 to 7 years. The study was carried out at the end of the first and second term of the 2013/2014 school year. Fifty four pupils (26 girls and 28 boys) participated in the study. Twenty eight pupils (16 girls and 12 boys) formed the experimental group whereas the control group was comprised of 26 pupils (10 girls and 16 boys). The study used the methodology of pedagogical experiment carried out using parallel group technique carried out in natural conditions and the method of individual cases (in the case of 4 pupils aged 6).
Pedagogical experiment was carried out from January to June 2014 during the second term of learning at school. The first term of learning was adopted as equalization of educational opportunities in all children. The first term of learning was aimed at introduction of children into the world of learning at school, familiarizing with a new environment and equalization of varied level of knowledge and school skills. The first term of learning was aimed at introduction of children into the world of learning at school, familiarizing with the new environment and equalization of the varied level of knowledge and school skills. An experimental factor was represented by a curriculum for Physical Education classes integrated with subject-related contents that used Edubal educational balls. Physical Education classes in the experimental group were carried out twice a week after 45 minutes using Edubal educational balls, whereas in the control group, the classes were carried out without using the balls. The dependent variable in the experimental group was level of temporal-spatial orientation in first-grade pupils from elementary school.

The level of temporal-spatial orientation was evaluated with a use of modified Reactive Shuttle Drill test by Pawlik et al. [59] and the Fusion Smart Speed System (Fusion Sport, Coopers Plains, QLD, Australia) (Fig. 1). The system is used in the certified Ball Games Research Laboratory in the Chair of Team Games at the University of Physical Education in Wroclaw, Poland, with a certificate of the Quality Management System (PN-EN ISO 9001:2009).

The modified Reactive Shuttle Drill test by Pawlik et al. [59] consisted in running 5 randomly chosen sections as fast as possible from the Smart Jump reaction mat to the gate indicated with a light column and a light reflector. The test started when a subject stepped on the Smart Jump mat and then the light in the randomly chosen gate column went on. The subject ran to the gate, crossed the line marked with a tape with both feet and then ran back to the mat. This pattern was repeated 5 times. Each student performed the test twice. The apparatus measured time with accuracy of 0.001 second and the result was averaged to 0.01 s. Statistical analysis was based on the better results of the two tests.

Fig 1. Reactive Shuttle Drill test by Pawlik et al. [59].
Statistical analysis was made in Statistica 8.0 statistical package, where basic calculations included: the arithmetic mean, the standard deviation and the coefficient of variation. Analysis of variance (ANOVA) was also carried out for the system in order to verify the relationships between the level of temporal-spatial orientation and gender, class and repeated measurement. The statistical significance was set at \( p < 0.05 \).

**RESULTS**

Statistical analysis included a comparison of the results obtained for the level of temporal-spatial orientation in pupils from the experimental and the control classes in the first examination (at the end of the first term of the school year) and the second examination (at the end of the second term of the school year). In the first examination, pupils from the control group obtained better results compared to pupils from the experimental group, with the difference between the results being statistically significant \( (p = 0.04) \). In the second examination, pupils from the experimental class obtained better results compared to those from the control group. However, the difference between the results obtained in both groups was not statistically significant \( (p = 0.87) \) (Fig. 2) (Tab. 1).

![Fig 2. Results obtained by pupils from the experimental and the control classes in the first and second examinations](image)

Table 1. Results obtained for the level of temporal-spatial orientation in the first and second examinations

<table>
<thead>
<tr>
<th>Examination</th>
<th>Class</th>
<th>Experimental class</th>
<th>Control class</th>
<th>( p )</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>( \bar{X} )</td>
<td>SD</td>
<td>VC</td>
</tr>
<tr>
<td>Examination 1</td>
<td>Total</td>
<td>27.15</td>
<td>3.07</td>
<td>11.31</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>27.03</td>
<td>3.41</td>
<td>12.61</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>27.33</td>
<td>2.65</td>
<td>9.71</td>
</tr>
<tr>
<td>Examination 2</td>
<td>Total</td>
<td>25.28</td>
<td>2.39</td>
<td>9.44</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>25.40</td>
<td>2.45</td>
<td>9.64</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>25.10</td>
<td>2.40</td>
<td>9.56</td>
</tr>
</tbody>
</table>

G – girls, B – boys, \( \bar{X} \) – arithmetic mean, SD – standard deviation, CV – coefficient of variation, * – statistically significant at \( p < 0.05 \)
A comparison of the results obtained for girls and boys from the experimental and the control classes revealed no statistically significant differences. In the first examination, girls obtained better results compared to boys in both classes. In the second examination it turned out that boys had better results (Fig. 3-4).

In the experimental class, pupils obtained better results for the level of temporal-spatial orientation in the second examination, with the difference in the results being statistically significant for both girls (p = 0.05) and boys (p = 0.00). In the control class, boys improved their results compared to the first examination. However, girls obtained poorer mean results for the time of temporal-spatial orientation in the second examination, with the differences in the results being statistically significant (see Tab. 1).

![Fig 3. Results obtained by girls and boys in the first examination.](image)

![Fig 4. Results obtained by girls and boys in the second examination](image)

Analysis of individual cases of 6-year-old pupils showed that all the pupils obtained better results in the second examination. In the first examination, pupils from both classes obtained poorer results than mean results obtained by
those who were 7 years old. In the control class and the second examination, pupils also obtained poorer results than mean results for the class. A student from the experimental class (x-1) substantially improved his/her results and obtained better time (24.99 s) compared to his/her older classmates (see Tab. 2).

**Table 2.** Results obtained by 6-year-old pupils in the first and second examinations

<table>
<thead>
<tr>
<th>Class/Gender</th>
<th>Examination</th>
<th>Examination 1</th>
<th>Examination 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental class</td>
<td>X-1 B</td>
<td>28.19</td>
<td>24.99</td>
</tr>
<tr>
<td>Control class</td>
<td>Y-1 G</td>
<td>26.53</td>
<td>25.80</td>
</tr>
<tr>
<td></td>
<td>Y-2 G</td>
<td>28.24</td>
<td>26.91</td>
</tr>
<tr>
<td></td>
<td>Y-3 B</td>
<td>27.55</td>
<td>26.95</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>27.63</td>
<td>26.16</td>
</tr>
</tbody>
</table>

G – girls, B – boys

**DISCUSSION**

The aim of the study was to determine the level and changes in the level of temporal-spatial orientation in first-grade pupils from elementary schools who participated in Physical Education classes integrated with subject-related content that used Edubal educational balls.

Since the moment of creation of Edubal educational balls, research has been carried out to find the relationships between Physical Education classes that use Edubal balls and the pupils’ physical fitness. The International Physical Fitness Test has been used to diagnose physical fitness. The studies have demonstrated that Physical Education classes that used Edubal educational balls modified physical fitness to the same degree as the classes without using these balls [48, 51-52, 55-56, 60-61].

There is only one publication available in the literature that analysed the relationships between the use of Edubal educational balls with spatial orientation in first-grade pupils from elementary schools [62]. The temporal-spatial orientation was diagnosed by means of the “running to the balls” test [37]. Level of temporal-spatial orientation in pupils from the experimental and control classes was better than in our study. The time of performing the test was similar. However, the results should not be compared due to a different form of performing the test. The Reactive Shuttle Drill test [59] is an objective tool, whereas “running to the balls” test involves substantial intervention of the test supervisor.

Analysis of the related literature showed that the level of temporal-spatial orientation has also been diagnosed by other researchers who used the Reactive Shuttle Drill Fusion Smart System [59, 63]. Pawlik et al. [59] compared the level of temporal-spatial orientation of third-grade pupils from elementary school who were diagnosed with specific learning problems (dyslexia, dysgraphia, dyscalculia) and pupils without such problems. Pupils with specific learning difficulties obtained the mean result of 23.35 s, whereas this value in
pupils without specific learning problems was 22.62 s. In our study, the mean result obtained for the level of temporal-spatial orientation in pupils in the experimental and control classes was around 25 s. The level of temporal-spatial orientation obtained in our study was similar; however, the results should not be compared with the previous studies due to the pupils’ different age.

Rokita et al. [63] diagnosed female and male fencers aged 14 to 16 years. They found that mean results for boys was 18.44 s, whereas this value in girls was 19.41 s. The level of temporal-spatial orientation in pupils analysed by Rokita et al. [63] was better than the results obtained in our study. However, they should not be compared due to the subjects’ different age and a different other of the research test stand in the examination. With respect to the results obtained for the level of temporal-spatial orientation, it can be concluded that the level of this ability changes with the subjects’ age. Older subjects obtain better results for the level of temporal-spatial orientation.

It was demonstrated that the change in the level of temporal-spatial orientation can be stimulated. The level of this ability might depend on, for example, using specific training methodologies and resources [41-44]. One publication available in the literature documented computer training used to improve the level of spatial abilities [44]. The study showed that all the pupils improved the results of the level of spatial orientation. After the training, pupils with the lowest level of temporal-spatial orientation improved (statistically significantly) their results. However, they did not obtain better results than the subjects with an initially higher level of temporal-spatial orientation. It was found that the lower the initial level of temporal-spatial orientation, the greater its final improvement. These findings are consistent with the results obtained in our study. The pupils from the experimental group who obtained statistically significantly (p = 0.04) poorer results in the first experiment improved their results in the second one. In the second experiment, pupils obtained better results compared to the pupils from the control class. However, the difference was not statistically significant this time.

It seems justified to introduce factors and experimental programmes to the educational process in order to improve the level of temporal-spatial orientation in pupils. David [44] proposed spatial orientation training using a computer game. However, it seems that a better method of modification of temporal-spatial orientation is offered by the use of games and play with Edubal educational balls during Physical Education classes. During Physical Education classes that use such balls pupils are active not only physically but also mentally. Moreover, they improve their physical fitness and develop cognitive skills [48-57, 60-62].

CONCLUSIONS
1. The level of temporal-spatial orientation in pupils from the experimental class in the first examination oscillated around 27 s and around 25 s in the second examination. In the control class, the result in both first and second examination oscillated around 25 s.

2. In the second examination, the pupils from the experimental and the control classes achieved a higher level of temporal-spatial orientation. The differen-
ce in the results obtained for the level of temporal-spatial orientation in the experimental class was statistically significant between the first and second examinations. Therefore, it seems justified to use Edubal educational balls in Physical Education classes in early school education.

3. Physical Education classes that used Edubal educational balls did not differ in a statistically significant way between the results obtained for the level of temporal-spatial orientation in first-grade pupils. However, it seems that further studies should be carried out in order to examine the relationships between Physical Education classes using Edubal educational balls with temporal-spatial orientation in pupils over a longer period of time, e.g. the whole school year. The results obtained during a half-year pedagogical experiment improved substantially. Therefore, it can be expected that elongation of the time of the experiment should significantly differentiate the level of temporal-spatial orientation in pupils.

4. Gender seems not to influence the pupils’ level of temporal-spatial orientation. In the first examinations, girls obtained better results compared to boys, whereas in the second examination this level was found to be better in boys.

Based on the above findings, it seems justified to conduct further studies in order to evaluate the level and possible changes in temporal-spatial orientation in first-grade pupils from elementary school who participate in Physical Education classes that use Edubal educational balls and to search for the relationships between temporal-spatial orientation and school performance of the pupils, particularly in the area of learning reading and writing skills.

REFERENCES


David LT. Training effects on mental rotation, spatial orientation and spatial visualisation depending on


Terlecki MS, Newcombe NS, Little M. Durable and generalized effects on spatial experience on mental


Potter C, Kaufman W, Delacour J, Mokone, M. Three dimensional spatial perception and academic perfor-

Lopes V, Rodrigues L, Maia JAR, Malina RM. Motor coordination as predictor of physical activity in chil-

Haapala E. Physical Activity, Academic Performance and Cognition in Children and Adolescents. A System-


Beilei L, Lui L, Qu D, van Hofston C. The development of fine motors and their relations to children’s aca-
demic achievement. Xin Li Xue Bao. 2002;34:494-499.


van Hoorn J, Maathuis C, Peters L, Hadders-Algra M. Handwriting, visuomotor integration, and neuro-


Zurek G. Zdolności motoryczne i cechy somatyczne a osiągnięcia szkolne uczniów wiejskich szkół pod-
stawowych z Dolnego Śląska [Motor skills and somatic characteristics and educational achievements of students in rural primary schools in Lower Silesia]. Studia i Monografie 105. Wroclaw: AWF; 2005, 319-327. Polish.

Baenninger M, Newcombe N. Environmental input to the development of sex-related differences in spa-


Potter C, Kaufman W, Delacour J, Mokone, M. Three dimensional spatial perception and academic perfor-

Terlecki MS, Newcombe NS, Little M. Durable and generalized effects on spatial experience on mental


David LT. Training effects on mental rotation, spatial orientation and spatial visualisation depending on
